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Abstract

Background: It has been thought that intramuscular ADP and phosphocreatine (PCr)
concentrations are important regulators of mitochondorial respiration. There is a threshold work
rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop
in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen

consumption (V Oymus) IS accelerated with rapid decrease in PCr (concomitant increase in ADP) in
muscles with drop in pH occurs during incremental plantar flexion exercise.

Methods: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise
(6-s contraction/4-s relaxation). Exercise intensity was raised every | min by 10% maximal
voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at
the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi),

ADP, and pH were measured by 3!'P-magnetic resonance spectroscopy. \% Oymus Was determined

from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared
continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also

recorded. Pulmonary oxygen uptake (V Oypu) Was measured by the breath-by-breath gas analysis.

Results: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP,

\Y% Omus» aNd \Y% 0,y did not change appreciably below 40% MVC, whereas above 40% MVC muscle
PCr decreased, and ADP, VoZmus, and Vozpu, increased as exercise intensity progressed, and

above 70% MVC, changes in muscle PCr, ADP, V Oyrmus» aNd \Y% 0ypyi accelerated with the decrease
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in muscle pH (~6.78). The kinetics of muscle PCr, ADP, V o, and Vozpu, were similar, and
there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001).

Conclusion: With decrease in pH muscle oxidative metabolism accelerated and changes in
intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion
exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis
stimulate accelerative muscle oxidative metabolism.

Background

Skeletal muscle respiratory control is a cardinal issue in
the field of muscle energetics. Early work on isolated
mitochondria identified ADP as an important stimulator
of mitochondrial respiration [1]. Thereafter, it has been
verified that ADP is a control signal of muscle oxidative
phosphorylation in many studies [2-7]. During steady
state phase of muscle contraction, muscle O, consump-

tion (V 0,,,) linearly correlates with intramuscular
phosphocreatine (PCr) concentration at varying intensi-
ties under relatively stable muscle pH conditions [8-10]. It
has also been demonstrated that muscle PCr and pulmo-

nary oxygen uptake ( V 0,pu1) Show similar kinetics during
the transition from rest to steady state exercise in humans
in a non-steady state condition [11-13]. In addition, Ros-
siter et al. [14] demonstrated that muscle PCr and slowly
developing supplementary component (slow compo-

nent) of Vozpul show similar response during a high
intensity constant load exercise with decreased pH condi-
tion. Therefore, it has been thought that intramuscular
ADP and PCr concentrations are important regulators of
skeletal muscle oxidative metabolism [1-14].

Although V 0,pu1 has been used as an indicator of muscle
oxidative metabolism [11-14], it does not specifically
indicate oxygen consumption each of the exercising mus-
cle group(s). Near-infrared continuous wave spectroscopy
(NIR.,) has unique capability for non-invasively evaluat-
ing of O, kinetics in an objective portion of tissue with
high-time resolution. NIR, was first applied to the study
of exercising skeletal muscle in humans in 1991 [15].
Since then, many more groups have applied this tech-

WS

nique [16-20]. V o, can be determined using NIR_,
with transient arterial occlusion [8], and its validity was
confirmed [21]. The rate of decrease in oxygenated hemo-
globin and/or myoglobin (HbO,/MbO,) under condi-

tions in which interruption of the O, supply to the muscle
(arterial occlusion) reflects V 0, [8,21,22]. Therefore,

this NIR_, technique enables us to determine V 0,
during exercise where metabolic condition changes
diversely.

It has been reported that there is a threshold work rate or
metabolic rate for cellular acidosis (pH;) and that, above
pHy, the decrease in muscle PCr is accelerated during
incremental exercise [23-25]. If muscle oxidative metabo-
lism is closely related with muscle PCr even under acidotic
condition, it would be predicted that acceleration in

increase in V o, coincided with decrease in pH. How-
ever, there is no evidence for the effect of decrease in pH
on muscle oxidative metabolism during incremental
exercise.

The aim of this study was to measure V 0,,,,, ADP, and

PCr during incremental exercise where muscle pH
changed from stable to decreasing condition. We hypoth-

esized that the increase in V 0, increase in ADP and
decrease in PCr occurred similar kinetics throughout
incremental exercise. When exercise intensity increased
above pH;, there is a possibility that the accelerative
decrease in PCr stimulates accelerative increase in muscle
oxidative metabolism during incremental exercise. To test
the second hypothesis that with decrease in pH accelera-
tive decrease in PCr could be responsible for the increase

in Vo, we identified the inflexion point of pH, PCr,
ADP, cytosolic free energy of ATP hydrolysis (AGup),

V 0ymyuy and V 0y, during incremental exercise. We pre-

dicted that when exercise intensity increased above the
level which decrease in pH occurred, PCr, ADP, AGupp,

V 0y and V 0,pu1 Would show greater change than that

obtained during stable pH condition during incremental
exercise.

Methods

Subjects

Five male volunteers, aged between 22 and 34 years, par-
ticipated in this study. All subjects were healthy, non-
smokers, and free of known diseases. All subjects were
fully informed of the risks involved in this study, and we
obtained written informed consent from each. This study
was approved by the Institutional Committee for the pro-
tection of human subjects.
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Experimental design

Each subject sat on a platform in an upright sitting posi-
tion with his right leg positioned horizontally. The sub-
jects performed the same exercise procedure five times on
different occasions: once (day 1) with the 31-phosphorus-
magnetic resonance spectroscopy (3!P-MRS) measure-
ment, twice (day 2, 3) with the respiratory gas analysis,

once (day 4) with the NIR,, measurement for determina-

tion of V 0,,,,, and once (day 5) with the EMG record.
With the exception of the 3!P-MRS measurement, the
other four measurements were performed outside the
MRS magnet. During these four measurements the sub-
jects inserted a leg into a cylindrical plastic pipe of the
same diameter and length as the bore of the MRS magnet.
For each measurement, whether in the magnet or the plas-
tic pipe, the leg was held in a fixed position by a cradle.

Exercise Protocols

On occasions of the experiment, maximal voluntary con-
tractions (MVC) was measured prior to the principal
experiment, and each subject's exercise load was set based
on the MVC of each. The MVC of isometric plantar flexion
was measured by pushing against a foot pedal with con-
nected force transducer. MVC was measured three times
with sufficient rest (> 3 min) between each performance.
The maximum value was used as the MVC. After sufficient
rest in an upright sitting position, the subjects performed
repetitive intermittent isometric plantar flexion exercise
with the right leg in the same position. One duty cycle of
contraction and relaxation consisted of a 6-s contraction
and a 4-s relaxation. With the use of a visual feedback
meter, the subjects were directed to perform using the pre-
scribed force. Additionally, the experimental director con-
tinuously verified force. Exercise intensity was increased
incrementally every 60 s by 10% MVC, starting from 10%
MVC to an intensity at which the subject could no longer
maintain the required force. A backrest was placed behind
the subject during exercise. To fix position of the subject
and to limit involvement of muscles other than calf mus-
cle, the contact area of the backrest and subject's body was
limited as small as possible. The height of backrest was 21
cm, and area of contact against subject's body was limited
to lower back only. The subjects were instructed not to
exert muscles other than the calf muscle to the best of their
ability during the exercise, and they were fully familiar-
ized with the exercise prior to the experiment.

3IP-MRS

31P-MRS signals were obtained by an NMR spectrometer
(Otsuka Electronics Co. Ltd.) with a 2.0-T superconduct-
ing 26-cm bore magnet. A double tuned ('H and 31P), 3.0-
cm diameter radio frequency surface coil tuned to 34.58
MHz with 60-us pulse width was used for the phosphorus
signal. Pulse repetition time was 2 s. Five pulses were aver-
aged to obtain a free induction decay (FID). Therefore, a
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spectrum was obtained every 10 s. Twelve spectra were
averaged during the pre-exercise resting period, and three
spectra were averaged during exercise. The surface coil was
placed on the medial head of the gastrocnemius muscle
(m.MG), and the coil and leg were held in a fixed position
in the magnet by a cradle. All 3!P-MRS spectra were fitted
to a Lorentzian line shape using the least-squares method.
The relative area and frequency of the individual peaks
were determined (Otsuka Electronics software) to calcu-
late the areas of PCr, inorganic phosphate (Pi), and B-ATP
peaks. The PCr and Pi intensities were normalized using
the sum of PCr and Pi to avoid influence from possible
changes in the sensitivity of 3!P-MRS signals. Saturation
correction was performed using saturation factors of PCr,
Pi, and B-ATP peaks, which were calculated by comparing
the data from the 2-s and fully relaxed spectra. The satura-
tion factors of PCr, Pi, and B-ATP peaks in this study were
1.330, 1.081, and 1.184, respectively. The intracellular pH
was calculated from the median chemical shift between
the P; and PCr peaks [26]. Changes in muscle PCr are
expressed as a percentage of the pre-exercise resting value.

To convert peak areas to concentrations, the B-ATP peak
was assumed to represent total ATP and was set at 8.2 mM
[27-29]. [PCr] and [Pi] could then be estimated as the
product of the areas to ATP (as PCr to B-ATP and Pi to B-
ATP) and 8.2 mM. Total creatine (TCr) was assumed to be
equal to the sum of PCr and Pi ([TCr] = [PCr] + [Pi]), and
TCr was assumed to be constant throughout the experi-
ment [10]. ADP was calculated with the assumption that
equilibrium of the Cr kinase (CK) reaction [23,30,31]:

[ADP] = {0.74 [ATP]([TCr] - [PCx])} / {(1.66 x 10°)(10A-
pHobs) [PCI]} (1)

The constant 0.74 is the estimated monovalent ion activ-
ity coefficient [31] that corrects for the fact that pH_ (is an
activity, subscript obs indicates observed factors, and 1.66
x 107 is the equilibrium constant for CK. Free magnesium
was assumed to be 1 mM and unchanging throughout the
experiment [32]. Cytosolic free energy of ATP hydrolysis
(AGp) was also calculated [23,30,31]:

AGqp = AGq + RT In ([ADP] [Pi] / [ATP]) + RT In [107-
(pHobs_7)] (2)

AGg, is Gibb's free energy, R is gas constant, and T is abso-
lute temperature. AG, is taken to be -32 kJ/mol at
pH7.0[31], RT at 37°C is 2.58.

NIR spectroscopy

NIR signals were obtained by NIR_,, (HEO-200, OMRON
Co. Ltd.). The NIR_,, probe contained a light source and
an optical detector with a distance of 3.0 cm between the
light source and detector to provide sensory input for the

Page 3 of 14

(page number not for citation purposes)



Dynamic Medicine 2005, 4:2

unit. A pair of two-wavelength light emitting diodes, with
wavelengths of 760 and 840 nm, was used as the light
source. A silicon photodiode was used as the photodetec-
tor. The NIR_,, probe was placed on the m.MG, and the
probe and leg were held in a fixed position by a cradle in
a plastic pipe that mimicked the bore of the MRS magnet.
Changes in HbO, and/or MbO,, deoxygenated Hb and/or
Mb, and total hemoglobin and/or myoglobin (THb/TMb)
were calculated by the least squares method using data
from the changes in the absorbance of these different
wavelengths of light. The sampling time of the data was
0.1s.

V 0, Was measured using NIR_, . with the transient
arterial occlusion technique described previously in detail

[8,21,22]. V 0,,,,, was determined by the rate of decrease
in HbO,/MbO, during arterial occlusion. Since the
changes in HbO,/MbO, measured by NIR_,,
dynamic balance between O, supply and O, consump-
tion, the rate of decrease in HbO,/MbO, during arterial

show a

occlusion reflects the V o, [8,21,22]. Arterial occlusion
was performed for 1 min during rest, and for 6 s once
every 30 s during isometric contraction. Timing for arterial
occlusion during exercise took place at the third and the
sixth contraction of each intensity i.e. at 20-26 s and 50-

56 s of each minute. The V o, was expressed as a value
relative to that obtained at rest (fold of resting).

Respiratory gas analysis

Y% Oyput Was measured during the pre-exercise resting
period and throughout the exercise period by the breath-
by-breath gas analysis method using an Aeromonitor AE-
280 (Minato Medical Science Co. Ltd.) [33]. This system
consists of a microcomputer, a hot-wire flow-sensor, and
oxygen and carbon dioxide analyzers (zirconium ele-
ment-based oxygen analyzer and infra-red carbondioxide
analyzer). Prior to the experiments, the flow-sensor and
gas analyzers were calibrated with a known volume of
room air at several mean flow rates and gas mixtures of
known concentration, respectively. To improve the signal-

to-noise ratio of V 0,pui €ach subject performed the exer-

cise session for V o,,, measurement twice on different
days, and the dual measurement data were subsequently
averaged.

Surface electromyograms

Surface electromyography (EMGs) were obtained from
the m.MG, lateral head of the gastrocnemius muscle
(m.LG), and soleus muscle (m.SOL) using a bipolar, sil-
ver-silver chloride electrode (10 mm diameter sample
area) with a fixed inter-electrode spacing of 30 mm

http://www.dynamic-med.com/content/4/1/2

(Nihon Koden Co., Japan) during incremental plantar
flexion exercise. The EMG signal was sampled at a rate of
2000 Hz using available software (BIOPAC Systems, Inc.,
USA) and stored on computer disk for later analysis. The
root mean square of the EMG signal (rmsEMG) was calcu-
lated. Prior to the principal experiment the subjects per-
formed MVC, and the rmsEMG was normalized as 100%
at MVC.

Data analysis
Analysis of each parameter was performed every 30 s as

the procedure is shown in figure 1. Except for V 0, all

data were averaged over 30 s. The data for V o, were
obtained at the third (20-26 s) and sixth (50-56 s) con-

tractions of each intensity. The reason V o, was meas-
ured only once during three contraction phases was to
avoid the limitations to exercise performance caused by
interrupting the blood flow. The value of the third con-
traction was used to represent the first 30 s of each minute,
and the value of the sixth contraction was used to repre-
sent the last 30 s of each minute. All averaged data were
shown from pre-exercise rest to the first 30 s at 80% MVC
exercise at which every subject was able to perform. The
logarithms of the individual metabolic parameters (pH,

PCr, ADP, AGyp, \Y% O)mus \Y% Opu) Were plotted against
exercise intensity in order to determine a break point of
metabolic change based on the method of determining
lactate threshold [34]. These plots were best fit by a piece-
wise linear regression model with a breakpoint.

Confirmation of reproducibility

Since the subjects performed the same exercise procedure
five times, we were able to obtain five sets of performance
data. The maximal exercise intensity the subjects were able
to perform during the exercise protocol was 80-90% MVC
(450-510 s). The maximal intensity at which each subject
was able to perform was the same throughout five exercise
sessions. The coefficient of variation for exercise duration
was 0.91%. Regarding time course change and peak value,

\% 0,pu did not differ significantly during the two meas-
urements. There was a significant correlation between

each time measurement for individual pulmonary V o,(r
=0.981~0.993, p < 0.001).

Statistical analyses

Data are expressed as means + SD. The data were com-
pared to determine significant changes in the values of
each parameter every 30 s compared with the values
obtained during the first 30 s of exercise (the first 30 s at
10% MVC), and the 30 s of exercise immediately before.
One-way analysis of variance (ANOVA) for repeated
measures was used to determine the significance of time
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Procedure for data analysis. Each parameter was analyzed every 30 s. Muscle phosphocreatine (PCr), inorganic phosphate

(Pi), pH, estimated ADP and free energy of ATP hydrolysis (AGrp), pulmonary oxygen uptake (V Oypu1)> and electromyogram

(EMG) were averaged over 30 s. The data for muscle oxygen consumption (V Oymus) Were obtained during the third (20-26 s)

and sixth (50-56 s) contractions at each intensity. The V Oymus Value of the third contraction was used to represent the first 30

s of each minute, whereas the V o, value of the sixth contraction was used to represent the last 30 s of each minute.

< Division of data analysis (30s). \Y% Oymus Measurement (6 s; once per three contraction phases).

course changes in each parameter, and Fisher's PLSD post
hoc comparisons were used to determine the significance
of differences of each parameter every 30 s. A linear regres-
sion analysis was used to examine the relationship
between each parameter. P < 0.05 was defined as statisti-
cally significant.

Results

Fig. 2 shows the time course changes in normalized
rmsEMG of m.MG, m.LG, and m.SOL. The rmsEMG in
those muscles increased similarly with increasing exercise
intensity. The rmsEMG of m.MG for each of the first 30 s
at 20%, 30%, 50%, 60%, 70%, and 80% MVC differed sig-
nificantly from that during the 30 s of exercise immedi-
ately before (i.e., prior intensity) (p < 0.05). Throughout
the exercise, the change in rmsEMG of m.MG was largest
in the three muscle groups.

Fig. 3A shows the time course of changes in intramuscular
pH. We found that pH was relatively constant, from
resting values (7.06 + 0.01) until 60% MVC (7.04 + 0.08),
but it decreased significantly (p < 0.05) at 70% MVC and
with exercise progression, being 6.78 + 0.22 at the end of
exercise.

Fig. 3B shows the time course changes in intramuscular
PCr. We found that there were significant differences after
the last 30 s at 40% MVC when compared with the value
obtained during the first 30 s at 10% MVC (p < 0.05), and
that PCr decreased with progression of exercise. Above
70% MVC, the values were significantly different when
compared with those obtained during the 30 s of exercise
immediately before. A linear regression line was drawn to
obtain the highest correlation coefficient above the last 30
s of 40% MVC, at which significant difference was
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Figure 2

Changes in root mean square of EMG (rmsEMG) during incremental intermittent isometric plantar flexion
exercise. Changes in rmsEMG at (A) the medial head of the gastrocnemius muscle (m.MG), (B) the lateral head of gastrocne-
mius muscle (m.LG), and (C) the soleus muscle (m.SOL) during incremental intermittent isometric plantar flexion exercise.
Data are represented as relative values obtained during maximal voluntary contraction (MVC) as 100%. Values shown are
means + SD of 5 subjects. * p < 0.05, ** p < 0.01 vs. the value during the first 30 s at 10% MVC (first 30 s of exercise). #p <
0.05 vs. the value obtained during the 30 s of exercise immediately before.
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Changes in muscle pH, PCr, ADP, and AG,1p during incremental intermittent isometric plantar flexion exer-
cise. Changes in (A) pH, (B) PCr, (C) ADP, and (D) AG,rp during incremental intermittent isometric plantar flexion exercise.
A dotted line in each panel B, C, and D represents a linear regression line which is drawn to obtain the highest correlation
coefficient above 40% MVC, at which significant difference was observed when compared with the value obtained during the
first 30 s at 10% MVC. Values shown are means * SD of 5 subjects. * p < 0.05, **p < 0.01 vs. the value during the first 30 s at
10% MVC (first 30 s of exercise). #p < 0.05 vs. the value obtained during the 30 s of exercise immediately before.

observed when compared with the value obtained during  Fig. 3C shows the time course changes in estimated ADP.
the first 30 s at 10% MVC. The PCr deviated downward =~ We found that ADP slightly increased from rest (8.8 + 0.9
from the regression line above 70% MVC. uM) until the last 30 s of 30% MVC (13.0 + 3.2 uM),
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Changes in V o,,,,, during incremental intermittent
isometric plantar flexion exercise. A dotted line repre-
sents a linear regression line which is drawn to obtain the
highest correlation coefficient above the first 30 s of 40%
MVC at which significant difference was observed when com-
pared with the value obtained during the first 30 s at 10%

MVC. The V Oymus IS €Xpressed as a value relative to that
obtained at rest (fold of resting). Values shown are means *
SD of 5 subjects. *p < 0.05, **p < 0.01 vs. the value during
the first 30 s at 10% MVC (first 30 s of exercise) # p < 0.05
vs. the value obtained during the 30 s of exercise immediately
before.

whereas above 40% MVC, these values differed signifi-
cantly from those obtained during the first 30 s at 10%
MVC (p < 0.05). Thereafter, ADP increased with progres-
sion of exercise, being significantly different above 70%
MVC compared with the value obtained during the 30 s of
exercise immediately before. At the end of exercise, ADP
was 46.6 + 12.8 uM. A linear regression line was drawn to
obtain the highest correlation coefficient above the first
30 s of 40% MVC, at which significant difference was
observed when compared with the value obtained during
the first 30 s at 10% MVC. The ADP deviated upward from
the regression line above 70% MVC.

Fig. 3D shows the time course changes in estimated AG yp.
We found that AG,p changed only slightly from rest (-
63.8 + 0.5 kJ/mol) until the last 30 s of 30% MVC (-62.9
+ 1.1 kJ/mol), whereas above 40% MVC, these values dif-
fered significantly from those obtained during the first 30
s at 10% MVC (p < 0.05). Thereafter, AG,pincreased with
progression of exercise, being significantly different above

http://www.dynamic-med.com/content/4/1/2

70% MVC compared with the value obtained during the
30 s of exercise immediately before. At the end of exercise,
AG,ppwas -55.1 + 1.9 KJ/mol. A linear regression line was
drawn to obtain the highest correlation coefficient above
the first 30 s of 40% MVC, at which significant difference
was observed when compared with the value obtained
during the first 30 s at 10% MVC. The AG,p deviated
upward from the regression line above 70% MVC.

Fig. 4 shows the time course changes in V 0, V Oymus
also showed slight changes during exercise below 40%
MVC. Above 40% MVC, however, there were significant
differences when compared with the value obtained dur-
ing the first 30 s at 10% MVC. V 0, subsequently
increased with progression of exercise, and the values
obtained during the last 30 s at 70% MVC and the first 30
s at 80% MVC differed significantly from the value during
the 30 s of exercise immediately before. The peak value of
V 0,us Was 21.3 + 5.2 fold higher than its resting value.
A linear regression line was drawn to obtain the highest
correlation coefficient above the first 30 s of 40% MVC, at
which significant difference was observed when com-
pared with the value obtained during the first 30 s at 10%
MVC. The V o0,,,,, deviated upward from the regression
line above 70% MVC.

Fig. 5 shows the time course changes in V 0ypur- We found

that V 0,pu1 changed only slightly, and there was little dif-
ference relative to exercise intensity up to 40% MVC.
When the exercise intensity was raised above 50% MVC,
the value of V 0pu differed significantly from that
obtained during the first 30 s at 10% MVC. Thereafter,
\Y% 0,pu increased with progression of exercise, and the val-
ues obtained during the last 30 s at 70% MVC and the first

30 s at 80% MVC were significantly different from the
value obtained during the 30 s of exercise immediately

before. The peak value of of V Oypu1 Was 684.8 + 64.8 ml/
min, which different from the resting value of Vozpul

(AV Oyput) by 364.8 + 74.3 ml/min. A linear regression
line was drawn to obtain the highest correlation coeffi-
cient above the first 30 s of 50% MVC, at which significant
difference was observed when compared with the value
obtained during the first 30 s at 10% MVC. The V Opul

deviated upward from the regression line above 70%
MVC.

When we examind the relationship between the averaged

muscle PCr and the averaged Vo, we observed a
significant inverse correlation between the two (r = 0.980,
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Figure 5

Changes in V o,,,,, during incremental intermittent
isometric plantar flexion exercise. A dotted line repre-
sents a linear regression line which is drawn to obtain the
highest correlation coefficient above the first 30 s of 50%
MVC at which significant difference was observed when com-
pared with the value obtained during the first 30 s at 10%
MVC Values shown are means % SD of 5 subjects. * p < 0.05,
*#p < 0.0l vs. the value during the first 30 s at 10%MVC(first
30 s of exercise), # p < 0.05 vs. the value obtained during the
30 s of exercise immediately before.

p < 0.001) (Fig 6A). There was also a significant inverse
correlation between averaged muscle PCr and averaged

V 0,50 (r=0.969, p < 0.001) (Fig 6B).

We also determined the relationship between the aver-

aged ADP and the averaged V 0, (Fig. 7A) and between

the averaged ADP and the averaged Vozpul (Fig. 7B).
There was a significant correlation betwene ADP and

V 0ymus (f = 0.983, p < 0.001) and between ADP and
Vozpul (r = 0.971, p < 0.001). Individual correlation
between ADP and V 0, (r = 0.916~0.963, p < 0.001)

and between ADP and Vozpul (r = 0.902~0.974, p <
0.001) were seen in all subjects (Figures not shown).
Additionally, there was a significant positive correlation
between averaged V o, and averaged Vozpul (r =
0.975, p < 0.001) (Figure not shown).

http://www.dynamic-med.com/content/4/1/2

The logarithms of individual metabolic parameters (pH,

PCr, ADP, AGurp, V Oppnuer Vozpul) were best fit by the
piecewise regression model with an inflexion point rang-
ing from 60 to 70% MVC, and individual break points for
all metabolic parameters were the same intensity in all
subject. There were significant intra-individual
correlations between each pair of metabolic parameters (r
=0.971~0.988, p < 0.001). 0.001)

Discussion
The main finding of this study was that increase in

V 0,4 accelerated coincidentally with drop in muscle

pH over 70% MVC during incremental intermittent
isometric contraction. Changes in muscle PCr ADP,

AGp, and V 0ypul also accelerated simultaneously with
drop in pH. In addition, the kinetics of each metabolic
parameter was similar, and there were significant correla-
tions between each pair of parameters (r = 0.969~0.983, p
<0.001).

It has been thought that intramuscular ADP and PCr con-
centration are important regulators of mitochondrial
respiration [1-14,35,36]. However, there is no evidence
that examined relationship between muscle oxidative
metabolism and muscle PCr or ADP during incremental
exercise where muscle pH changed from stable to decreas-
ing condition. According to the PCr shuttle hypothesis
[37] and other biochemical hypotheses [38], control of
respiration is exerted linearly at the mitochondria by the
declining PCr and concomitant rise in cytosolic Cr. These
hypotheses [37,38] are based on observations of linear
changes in muscle respiration relative to increasing con-
traction intensity under relatively stable pH conditions.
The greater rate of breakdown of PCr under acidotic con-
ditions [23-25], if still tightly coupled to oxidative phos-

phorylation, would predict that Vo, increases
nonlinearly with increasing contraction intensity. In this

study, the increase in V o, is actually accelerated with
rapid decrease in PCr during a conspicuous drop in pH, to

~ 6.78. Additionally, the accelerated increase in V 0,
coincided with abrupt increase in ADP. Consequently, our
results indicated that muscle oxidative metabolism is
closely related with muscle PCr and ADP even under mild
acidotic conditions. Therefore, it is suggested that rapid
changes in muscle PCr and/or ADP, coincided with drop
in pH, are factor(s) that accelerate muscle oxidative
metabolism during incremental intermittent isometric
contraction.

The accelerated changes in PCr, ADP, Vo, Vo2pul,
and the calculated AG,;, above 70% MVC coincided with
the decrease in pH, indicating that metabolic demand
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changes nonlinearly with increasing exercise intensity
(Fig. 3, Fig. 4, Fig. 5). In contrast, others have shown that,
although above pH; muscle PCr rapidly decreases, AG p

increases linearly with increasing intensity throughout

dynamic plantar flexion exercise [23]. V O,pui Tises line-
arly with increasing work rate during bicycle exercise
[39,40], and AG,pshows a linear increase with increasing
work rate during dynamic plantar flexion exercise [23]

consistent with pulmonary V o, [39,40]. One possible
explanation for the different results between the earlier
studies [23,39,40] and ours is the difference of load set-
ting. Previous dynamic exercise studies were incremented
by prescribed work rate, until either the frequency of con-
traction/s or the full range of motion could no longer be

sustained [23] or until maximal V Opyl Was attained by
increments of 15-30W/min ramp loaded bicycle exercise
[39,40]. In contrast, we loaded using % MVC and reached
80-90% MVC at the end of exercise. Although % MVC
was not expressed in those previous studies, it is possible
that the peak intensity attained in our study was higher in
those previously reported [23,39,40]. It is therefore con-
ceivable that a larger amount of type II fibers were
recruited in our study during exercise above the intensity
where drop of muscle pH occurred. Since the energy cost
of type Il fibers is larger than that of type I fibers [41,42],
an increase in type II fiber recruitment may produce

greater changes in muscle PCr, ADP, V 0, V 0ypy and
AG,rp above the intensity during which a decrease in pH
occurs.

Another explanation for the different results between the
earlier study [23] and ours (i.e. linear vs. nonlinear
increase in AG,p) may be the difference in types of mus-
cle contraction (i.e. concentric vs. intermittent isometric
contraction). A nonlinear relationship between heat pro-
duction, an indicator of ATP turnover rate, and force pro-
duction during voluntary isometric contractions has been
reported, although EMG activity continued to increase lin-
early with force production [43]. In addition, it is impos-
sible to determine mechanical work for this type of static
contraction. Therefore, voluntary isometric contraction
does not necessarily show linear relationships between
energy demand and exercise intensity or muscle electrical
activity.

One might criticize that despite the increasing exercise
intensity in the initial phases, up to 30-40% MVC, there
were only small changes in energy metabolism. At the

onset of exercise, V 0,,, showed a steep increase, which

remained stable until 40% MVC. V Opu and heart rate

often exceed their steady state levels at the onset of exer-
cise (phase I) during very low work rates [44]. This abrupt

http://www.dynamic-med.com/content/4/1/2

increase in V Oypu 18 due to the rapid elevation of cardiac
output that drives mixed venous blood through the lungs

[44]. Itis possible, therefore, that phase I V 0,pui €xceeded
the oxygen demand from the initial phase of exercise in

this study. PCr, ADP, AGp, VOZmUS, and Vozpul also
changed only slightly during exercise below 30-40%
MVC. We found however, that rmsEMG of m.MG, the
same site as 31P-MRS and NIR_,, measurements, increased
with increasing exercise intensity, and that rmsEMG of
m.LG and m.SOL changed similarly with m.MG (Fig. 2).
These results indicate that, although energy consumption
changed slightly below 30-40% MVC, muscle electrical
activity changed significantly with increased exercise
intensity. It has been demonstrated that heat production
increased only moderately with increasing contraction
intensity during isometric contraction at low intensities,
though EMG increased relative to contraction intensity
[43]. Therefore, it appears that little metabolic change
during exercise at low intensities is a characteristic of iso-
metric contraction.

One limitation of our study is that the bore diameter of
the 31P-MRS magnet used in this study was small (26cm),
and it only permitted us to perform intermittent isometric
plantar flexion. Isometric contraction is sensitive to
occlude blood flow [45]. Therefore, one concern is that
limited blood flow affected the results of this study. How-
ever, as far as we observe EMGs, the subjects fully relaxed
between contractions even at highest intensities. In addi-
tion, metabolic parameters (pH, PCr, AG,p) of this study
reached at the end of exercise were approximately same
levels as reported data which performed incremental
dynamic plantar flexion exercise [23]. The result obtained
in this study could be comparable to the previous study
that used dynamic exercise [23].

Although EMGs of plantar flexor muscles increased with
increasing exercise intensity it is impossible to entirely

eliminate the possibility that increases in V Oypui could

include V o,,,,, from other muscles besides the plantar
flexors. These should include muscles that maintain pos-
ture during exercise especially at high intensity. However,
we observed a linear relationship between calf V o,

and V Ogpul (1 =0.975, p < 0.001). Moreover, the \Y% O2pul
kinetics was similar to muscle ADP and PCr which are
thought to be important regulators of muscle oxidative
metabolism. Therefore, we believe that the increase in
\Y% Oypyi Primarily derives from the increase in V 0y s i
the active calf muscle.
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Conclusion

V 0,mus changed similarly with PCr and ADP throughout
incremental intermittent isometric plantar flexion exer-

cise. The increase in V o,,,,accelerated under mild acido-
sis during exercise at high intensity. The point of
acceleration coincided with rapid changes in muscle PCr
and ADP. The results of this study suggest that rapid
decrease in PCr (concomitant accelerative increase in
ADP) under mild acidotic condition stimulates accelera-
tive muscle oxidative metabolism during incremental
intermittent isometric exercise at high intensity.
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